Photovoltaic Performance and Reliability in Qatar

Amir Abdallah, Diego Martinez, Ben Figgis

PHOTOVOLTAIC TECHNICAL CONFERENCE PVTC, 9th to 11th of May 2016, Marseille, France
Outline & Objectives

- **Motivation**
 - The deployment of Photovoltaic in Qatar

- **Objectives**
 - Evaluating the performance of various Photovoltaic PV technologies & mitigate the impact of Qatar climatic conditions

- **Challenges**
 - PV performance & reliability in desert climates

- **Outdoor Performance**
 - Effect of temperature, dust and degradation on performance
Solar Resource in Qatar

- **Location**
 - Doha: Latitude 25.33° North, Longitude 51.43° East

- **Insolation Data**
 - 13 Solar ground-based monitoring stations
 - Global Horizontal Irradiation GHI = 2013 kWh/m²/year

- **Other factors**
 - Dust Storm, rain Falls, ...

Annual average sums of Global Horizontal Irradiation GHI 2003-2013
Photovoltaic Technologies

- Installed capacity 142 kW
- Silicon and thin films technologies
- Fixed: tilted = 22° due South
- Sun tracking: 1-axis and 2-axis

Photovoltaic Technologies installed at the Solar Test Facility in Doha, Qatar.
Solar Test Facility 2-2

- **Meteorological Data**
 - Global Plane of Array irradiance
 \[G-\text{POA} = 6.2 \text{ kWh/m}^2/\text{day} \ & \text{GHI} = 5.9 \text{ kWh/m}^2/\text{day} \]
 - High Diffuse Horizontal Irradiation DHI
 - Power demand following the daily irradiance
 - Temperature = 31 °C
 - Relative Humidity RH = 43%

Measured average G-POA, GHI, DNI and DHI

Daily irradiance

Daily Temperature & Humidity
Crystalline Silicon and/or Thin Film Technologies? 1-2

- **Energy Yield [kWh/kWp]**
 - Two years data 2014-2015
 - Arrays of approx. 8 modules
 - Similar conditions: cleaning
 - Performance at low irradiance
 - Degradation
Energy Yield [kWh/kWp]
- Two years data 2014-2015
- Arrays of approx. 8 modules
- Similar conditions: cleaning
- Performance at low irradiance
- Degradation
Dust Effect

- The short-circuit current I_{sc} is the most electrical parameter affected by dust accumulation.
- Modeling energy yield uses soiling losses 2%.
- Energy yield drops by 15-20% per month due to dust accumulation (Doha).
- Dust storm frequency: dust characteristics.

PV arrays before and after dust storm
Adaptation: Module Cleaning

- Effect of module cleaning: High (every week), Medium (every 2 months) and Low (every 6 months)
- Power output increases after module cleaning or rain fall
- Total cost ~ 0.02 USD/m²
Mitigation: Dust Characteristics

- Dust samples from exposed modules
- Average particle size of 10 µm
- XRD: Calcite (CaCO$_3$), quartz (SiO$_2$) 7%, etc.
- Magnetic hysteresis loop of dust particles
- Effect of temperature, humidity, wind, sun tracking, the surroundings
Dust Effect 4-4

- **Mitigation: Anti-dust Coatings**
 - Commercial anti-dust coatings A & B
 - No significant effect on PR
 - Anti-dust coatings vs. module cleaning

- **Challenges**
 - Minimize light reflection
 - Durability: adhesion & abrasion
 - Applications
 - Cost

Comparing anti-dust coatings A & B & module cleaning (every 2 months)
Degradation of Thin Film Technologies

- **Buckling and Delamination of Thin Films**
 - High operating temperatures
 - High residual compressive strains
 - Poor adhesion at the interface
 - Moisture ingress to the interface
 - UV exposure: annual 120 kWh/m^2

- **IV curve**
 - Fill factor (FF) drops: resistive losses at the interconnection

IV curve of a reference module and a module with thin film delamination (Tandem)
Summary

- **Temperature Effect**
 - Silicon Heterojunction (SHJ) technology showed a higher open circuit voltage (V_{oc}) compared with conventional silicon technology

- **Dust effect**
 - A drop of by 15-20% per month on power output due to dust accumulation
 - Optimum schedule module cleaning

- **Degradation of thin films**
 - Bucking and delamination of thin films due to high biaxial residual compressive strain and/or a poor adhesion at the interface
Thank You

www.qeeri.org.qa